

Tailored Availability Metric

Emily Conway

Associate Market Design Specialist

ICAPWG/MIWG

February 26, 2020

Agenda

- Background and Recap
- Availability-based resources
- Wind and solar resources
- MST 5.12 Changes
- Next Steps
- Appendix

Background and Recap

A Grid in Transition – The Plan

- Carbon Pricing
- Comprehensive Mitigation Review
- DER Participation Model
- Energy Storage
 Participation Model

Aligning Competitive Markets and New York State Clean Energy Objectives

• Enhancing Energy & Shortage Pricing

- Ancillary Services Shortage
 Pricing
- Constraint Specific Transmission Shortage Pricing
- Enhanced Fast Start Pricing
- Review Energy & Ancillary Services Product Design
 - More Granular Operating Reserves
 - Reserve Enhancements for Constrained Areas
 - Reserves for Resource Flexibility

Valuing Resource & Grid Flexibility

• Enhancements to Resource Adequacy Models

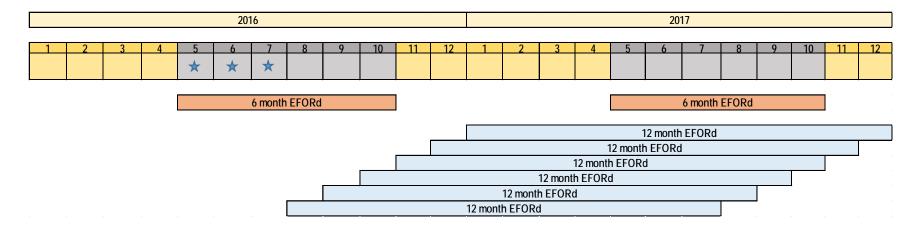
- Revise Resource Capacity Ratings to Reflect Reliability Contribution
 - Expanding Capacity Eligibility
 - Tailored Availability Metric
- Capacity Demand Curve Adjustments

Improving Capacity Market Valuation

Recap

- 2020 Deliverable: Q2 Market Design Complete for a May 1, 2021 Implementation
- 2019 Deliverable: Market Design Concept Proposal
 - For availability-based resources, the NYISO proposed the weightings of peak months in the Market Design Concept Proposal
 - For wind and solar resources, the NYISO proposed a reoccurring study that will result in relative capacity value weightings across the Peak Load Window hours

Availability-based Resources



Proposal

- At this time, the NYISO is proposing the following changes to the structure of the EFORd calculation
 - The NYISO proposes changing the structure of the EFORd to take the average of the previous 2 like-Capability Periods EFORds
 - Under this construct:
 - A two year look-back would be consistent with the look-back time-frame used today
 - Outages directly effect their respective Capability Period (i.e. Winter outages are reflected in the Winter EFORd)
 - Respective peak months account for 50% of the calculation
 - See Appendix for example calculations of the delta AEFORd value

Proposal – Summer 2018 AEFORd Example

- The current calculation consists of 6 consecutive 12-month rolling average EFORds, and the proposed calculation takes the average of the previous 2-like Capability Period EFORds
 - The stars on May, June, and July of 2016 indicate the additional months for the Summer 2018 AEFORd example that would now be included in the proposed calculation

Proposal

- At this time the NYISO is not proposing applying a direct weighting to the peak months of the calculation
 - As previously presented on July 24th 2019, the EFORd calculation is based on the Service Hours in relation to the Forced Outage Hours and Reserve Shutdown Hours
 - For peaker plants, Service Hours typically occur during peak periods
 - If an outage that has a long duration (e.g., 1 month) occurs in a non-peak month, it will drive the non-peak EFORd up due to the fact that the peaking units typically record less Service Hours during non-peak periods
 - If a peaker unit records a high number of Service Hours and no outages during a peak month, it will drive the peak EFORd down
 - Therefore, the calculation captures the incentive to be available during the peak period
 - See example on the following slide

EFORd Example

- When a high non-peak EFORd and a low peak EFORd is weighted and averaged together, the result shows an increase in the overall EFORd
- The following shows data and calculated EFORds for 2 months of a hypothetical unit
 - When a low peak-month EFORd is weighted 75% of the calculation, the total AEFORd increases by 4%

			Non-Peak			
SH	RSH	FOH	FO Count	EFDH	Attempted Starts	Actual Starts
20	600	100	1	0	2	1
			Peak			
SH	RSH	FOH	FO Count	EFDH	Attempted Starts	Actual Starts
500	195	25	1	0	15	14
			Total			
SH	RSH	FOH	FO Count	EFDH	Attempted Starts	Actual Starts
520	795	125	2	0	17	15

	EFORd	Weighting	New EFORd
Non-peak month	51%	25%	13%
Peak month	4%	75%	3%
Total	12%		16%

Proposal

For new resources the class average will be used

- For example:
 - If a resource has recorded data for 1 Capability Period, the AEFORd will take the average of the calculated EFORd of the unit's actual data for 1 Capability Period and the class average for the missing Capability Period
- For a resource that is in an ICAP ineligible state (e.g., Mothball, IIFO) the NYISO will look-back until historic data is available
 - For example:
 - For a Summer 2018 Capability Period AEFORd, if historic data was unavailable for months August October 2016, the NYISO would replace the missing data from the next available historic year, *i.e.* August October 2015

- As a part of the Market Design Concept Proposal, the NYISO proposed a reoccurring study every 4 years, that would result in hourly capacity value weightings across the Peak Load Window
 - Weightings would be applied to the respective hourly production data
 - The study would run concurrently with the study for Expanding Capacity Eligibility
 - Each study could reset the top 4 hours within the Peak Load Window and percentages based on the percentages for Expanding Capacity Eligibility
- Initial analysis shows potential weighting percentages across the Peak Load Window based off of different IRM cases
 - Tying the percentages to Loss of Load Events reflects the highest needs of the system

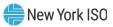
• The following cases show the differences in the hourly LOLE percentages of the top 4 hours:

	2019 IRM Fina	al Base Case			2020 IRM Prelim	inary Base Case			High Renewal	oles (12K) Case
HB	8 Hour	6 Hour		HB	8 Hour	6 Hour		HB	8 Hour	6 Hour
12	7%			12	7%			12	5%	
13	13%	14%		13	13%	14%		13	11%	12%
14	17%	19%		14	17%	19%		14	16%	18%
15	19%	21%		15	19%	21%		15	18%	20%
16	19%	21%		16	19%	21%		16	19%	21%
17	14%	15%		17	13%	15%		17	16%	18%
18	9%	10%		18	9%	10%		18	9%	10%
19	3%			19	4%			19	5%	
			_				_			
Top 4 Hours	68%	76%		Top 4 Hours	68%	76%		Top 4 Hours	69%	78%

- The High Renewables Case runs the 2020 Base Case with an additional 12,000 MW of renewable resources
 - 4,000 MW of solar, 4,000 MW of onshore wind, and 4,000 MW of offshore wind
- The whitepaper that describes the high renewable study can be found here:
 - <u>http://nysrc.org/PDF/MeetingMaterial/ECMeetingMaterial/EC%20Agenda%20249/4.3%20High%20Renewable%20Resource%20Mode</u> <u>ling%20White%20Paper%20v1.1%201-7-2020-Attachment%204.3.pdf</u>

- Additional analysis assessed the hourly LOLE percentages for 4000 MW of onshore wind, offshore wind, and solar from the 2020 Base Case
 - Analysis incremented 4000 MW of each of the specific resource type to the 2020 IRM Base Case, rebalanced to the 0.1 LOLE standard

	4000 MW Onshore Wind		
HB	8 Hour	6 Hour	
12	8%		
13	13%	14%	
14	17%	19%	
15	18%	21%	
16	18%	21%	
17	14%	15%	
18	9%	10%	
19	4%		
Top 4 Hours	67%	76%	


	4000 MW Offshore Wind		
HB	8 Hour	6 Hour	
12	9%		
13	16%	18%	
14	20%	23%	
15	19%	22%	
16	18%	20%	
17	11%	13%	
18	5%	6%	
19	2%		

Top 4 Hours	68%	77%	

	4000 M	IW Solar
HB	8 Hour	6 Hour
12	5%	
13	9%	10%
14	15%	17%
15	18%	20%
16	20%	23%
17	16%	18%
18	11%	12%
19	7%	
Top 4 Hours	68%	78%

- The relative capacity value weightings established will align with the Peak Load Windows proposed in the Expanding Capacity Eligibility project
 - 6 hour Peak Load Window:
 - Summer: HB 13 HB 18
 - Winter: HB 16 HB 21
 - 8 hour Peak Load Window:
 - Summer: HB 12 HB 19
 - Winter: HB 14 HB 21
 - The duration of the Peak Load Window is dependent on resources with duration limitations

Proposal


- At this time, the NYISO is proposing the following weightings across the 8-hour and 6-hour PLW
- For a 6-hour PLW, the top 4 hours will receive a 75% weighting
 - Weightings of the shoulder 2 hours will be equally weighted at 12.5% each
- For an 8-hour PLW, the top 4 hours will receive a 70% weighting
 - Weightings of the shoulder hours will be 3-tiered
 - In other words, the next top 2 hours will be weighted 20%, and the last 2 hours will be weighted 10%
 - See chart on Slide 18

Proposal

- Summer and Winter Capability Period months will receive the same set of weightings, within its respective Peak Load Window hours
 - For the Winter PLW, the top 4 hours will remain consistent with methodology used today, and the top load hours from Expanding Capacity Eligibility (HB 16 – HB 19)
- Under this construct, wind and solar resources will still have the opportunity to receive 100% performance factors if they perform in all hours of the Peak Load Window

	Summer Peak Load Window		Winter Peak Load Window	
НВ	6 Hour	8 Hour	6 Hour	8 Hour
12		5.0%		
13	12.5%	10.0%		
14	18.75%	17.5%		5.00%
15	18.75%	17.5%		5.00%
16	18.75%	17.5%	18.75%	17.50%
17	18.75%	17.5%	18.75%	17.50%
18	12.5%	10.0%	18.75%	17.50%
19		5.0%	18.75%	17.50%
20			12.5%	10.0%
21			12.5%	10.0%
Top 4 Hours	75%	70%	75%	70%

Change in Performance Factors

- Analysis shows the delta in performance factors for wind and solar resources in both Summer and Winter
 - A negative percentage reflects a decrease in the performance factor

Summer Solar Delta				
Year	6-hour PLW 75%	8-hour PLW 70%		
2012	-2.4%	-3.2%		
2013	-2.3%	-3.2%		
2014	-2.8%	-3.8%		
2015	-2.4%	-3.3%		
2016	-2.6%	-3.6%		
Average	-2.5%	-3.4%		

Winter Solar Delta				
Year	6-hour PLW 75%	8-hour PLW 70%		
2012	-0.3%	2.5%		
2013	-0.2%	2.1%		
2014	-0.3%	2.1%		
2015	-0.3%	2.2%		
2016	-0.2%	2.3%		
Average	-0.2%	2.2%		

Summer Wind Delta				
Year	6-hour PLW 75%	8-hour PLW 70%		
2013	-0.3%	-0.3%		
2014	-0.2%	-0.2%		
2015	-0.4%	-0.4%		
2016	-0.4%	-0.4%		
2017	-0.6%	-0.6%		
Average	-0.4%	-0.4%		

Winter Wind Delta				
Year	6-hour PLW 75%	8-hour PLW 70%		
2013	0.6%	0.5%		
2014	1.0%	0.6%		
2015	0.7%	0.3%		
2016	0.6%	0.5%		
2017	0.5%	0.4%		
Average	0.7%	0.5%		

MST 5.12 Changes

MST 5.12

Updates have been made to 5.12.6.2 to reflect the following:

- The hourly weightings proposed for wind and solar resources within the 8-hour and 6-hour Peak Load Window
 - A table has been added to show the hourly weightings
- The previous 2 like-Capability Period look-back for availability-based resources
- Section 5.12.14.3 has been updated to reflect the 4-year reoccurring study for wind and solar resources
- Detailed changes will be made to Section 4.5 and Attachment J of the ICAP Manual pending FERC approval

Next Steps

Next Steps

- At this time, the NYISO is targeting a BIC in the near future for May 1, 2021 implementation
 - The NYISO is seeking stakeholder feedback on today's presentation by March 3rd

Feedback/Questions?

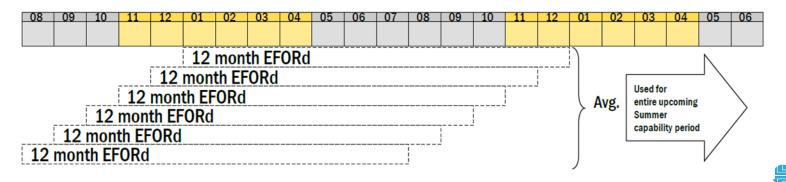
The NYISO will consider input received during today's Working Group meeting and further input sent in writing to deckels@nyiso.com and econway@nyiso.com

Appendix

Recap


- March 7th, 2019: The NYISO discussed expanding the project scope to include all availability-based and performancebased resources
 - <u>https://www.nyiso.com/documents/20142/5375692/Tailored%20Availability%20Metric.pdf/92ef1b5d-0ec3-cee5-df69-e2130934ec0e</u>
- May 9th, 2019: The NYISO presented initial analysis for availability-based resources that use the EFORd
 - <u>https://www.nyiso.com/documents/20142/6474763/Tailored%20Availability%20Metric%20050919.pdf/2c86f002-0fe5-b3cb-05d8-f118e4dd392f</u>
- July 24th, 2019: The NYISO presented the Market Design Concept Proposal for availability-based resources that use the EFORd as their derating factor
 - <u>https://www.nyiso.com/documents/20142/7674442/Tailored%20Availability%20Metric.pdf/e28df5c2-6994-ba5c-7ca2-05abeba9daeb</u>
- August 23rd, 2019: The NYISO began discussion of analysis options for performance-based resources
 - <u>https://www.nyiso.com/documents/20142/8040247/tailored%20availability%20metric%20082319.pdf/ada7cacf-97aa-699a-7ead-e1e39b1a51f8</u>
- October 18th, 2019: The NYISO continued discussion of analysis for performance-based resources
 - <u>https://www.nyiso.com/documents/20142/8783504/Tailored%20Availability%20Metric.pdf/7a9c6c65-f218-b685-a2d5-16f491276d29</u>
- November 21st, 2019: The NYISO presented the Market Design Concept Proposal for performance-based resources
 - https://www.nyiso.com/documents/20142/9312827/Tailored%20Availability%20Metric.pdf/c4271e59-b0e0-7c0a-c2f9-15cc91bbb2ef
 New York ISO

Availability-based Resources


Background

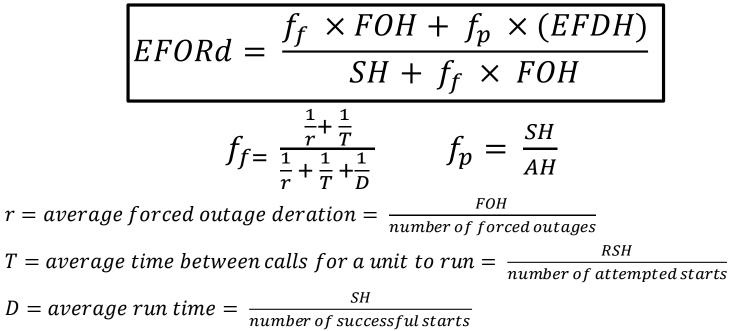
- Unforced Capacity (UCAP) is the amount of capacity a Resource is qualified to supply
 - UCAP = Minimum ICAP x (1 Derating Factor)
- Translation factor 1 Derating Factor is used to measure availability of a Resource
 - Takes into account forced outages and forced deratings

Background

- The current methodology for calculating a Capability Period AEFORd is the average of six consecutive (rolling) 12-month EFORd calculations
 - Under this construct:
 - It is assumed outages are random
 - Winter outages directly effect a Summer AEFORd
 - Respective peak months (June, July, and August) account for 25% of the calculation

New York ISO

EFORd Calculation


- The EFORd equation looks at 7 different inputs to calculate the value
- Event Hours:
 - Service Hours (SH) sum of all Unit Service Hours
 - Reserve Shutdown Hours (RSH) sum of all Unit Reserve Shutdown Hours
 - Forced Outage Hours (FOH) sum of all hours experienced during Forced Outages or Startup Failure
 - Equivalent Forced Derated Hours (EFDH) the sum of all forced derating hours multiplied by the size of the reduction (MW), divided by the Net Maximum Capacity (NMC)

• Event Counts:

- Number of Forced Outage Events
- Number of Attempted Start Events
- Number of Actual Start Events

EFORd Calculation

GT Unit 1

• Summer 2018

Proposed	Proposed Calculation	
Year EFORd		
2016	24.92	
2017	11.38	
2018	18.15	

Current Calculation	
Calc. No	EFORd
1	21.20
2	16.47
3	13.24
4	10.55
5	11.36
6	13.05
2018	14.31

Delta
-3.84

Proposed Calculation	
Year EFORd	
2016-17	10.09
2017-18	17.40
2018-19	13.74

Current Calculation	
Calc. No	EFORd
1	15.05
2	14.78
3	14.36
4	14.31
5	13.74
6	10.23
2018	13.74

GT Unit 2

• Summer 2018

Proposed	roposed Calculation	
Year EFORd		
2016	0.12	
2017	2.63	
2018	1.38	

Current Calculation	
Calc. No	EFORd
1	1.75
2	1.70
3	1.75
4	1.78
5	1.79
6	2.07
2018	1.81

Delta
0.43

Proposed Calculation			
Year EFORd			
0.64			
0.11			
0.37			

Current Calculation	
Calc. No	EFORd
1	2.16
2	1.92
3	1.94
4	1.87
5	1.84
6	0.05
2018	1.63

GT Unit 3

Proposed

Year 2016

2017

2018

• Summer 2018

Calculation	Cur
EFORd	Calc
37.36	
0.37	
18.87	

urrent Calculation		
alc. No	EFORd	
1	21.71	
2	13.02	
3	6.10	
4	0.43	
5	9.76	
6	19.36	

11.73

2018

Delta
-7.13

Proposed Calculation		
EFORd		
1.75		
91.13		
46.44		

Current Calculation		
Calc. No	EFORd	
1	28.27	
2	35.92	
3	42.43	
4	45.42	
5	49.41	
6	54.65	
2018	42.68	

ST Unit 4

• Summer 2018

Proposed Calculation		
Year	EFORd	
2016	1.88	
2017	5.67	
2018	3.77	

Current Calculation		
Calc. No	EFORd	
1	4.85	
2	4.92	
3	5.04	
4	3.59	
5	3.22	
6	3.05	
2018	4.11	

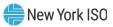
Proposed Calculation		
EFORd		
0.00		
0.61		
0.31		

Current Calculation		
Calc. No	EFORd	
1	3.03	
2	2.92	
3	2.99	
4	3.06	
5	2.96	
6	0.29	
2018	2.54	

Delta
2.24

Analysis

- Initial analysis calculated the change in the translation factor between the current mechanism used today and the proposed methodology
 - Translation factor = 1 Derating Factor (see Appendix)
 - The delta value shows: (the proposed translation factor the current translation factor)
- Calculations show there is not a significant change in the AEFORd between the two methodologies
 - Analysis included 3 peaker gas turbine units, and 1 steam turbine unit
 - GT Unit 3 recorded fairly high EFORds (more outages) in Summer 2016, which is not heavily reflected in the current EFORd used today
- A similar methodology is used in the IRM set by the Reliability Council, which calculates an EFORd using data from the previous 5 years


Summer 2018		
Unit Name	Translation	
onicidante	Factor Delta	
GT Unit 1	-3.84	
GT Unit 2	0.43	
GT Unit 3	-7.13	
ST Unit 4	0.34	

Winter 2018-19		
Unit Name	Translation	
Ont Name	Factor Delta	
GT Unit 1	0.00	
GT Unit 2	1.26	
GT Unit 3	-3.76	
ST Unit 4	2.24	

- The current performance factor for performance-based Installed Capacity Suppliers is based on actual performance over peak periods
 - For wind and solar resources, performance factors are calculated based on the current 4-hour window in the respective peak months
 - Summer:
 - HB 14 HB 17
 - June, July, and August
 - Winter:
 - HB 16 HB 19
 - December, January, and February
 - Performance factors are calculated by dividing the output performance by the nameplate capacity of the resource

Proposal for Wind and Solar Resources

- Based off analysis done thus far, the NYISO is proposing a reoccurring study for wind and solar resources
 - The study will run concurrently with the Capacity Value Study and will be conducted every 4 years
 - The Capacity Value Study and this study will use a similar base case
 - The base case built on will be from the IRM Study
 - For this base case, additional wind and solar resources could potentially be added to establish relative capacity value weightings for wind and solar resources
- The proposal would be effective in 2021
 - An initial study would be conducted in the Market Design Complete stage (Q2 of 2020)

Proposal for Wind and Solar Resources

- The relative capacity value weightings will be shaped across the Peak Load Window hours
 - A subset of Peak Load Window hours will be weighted higher than the remaining shoulder hours
 - Preliminary weightings will be established as a part of the Market Design Complete
- Summer and Winter Capability Period months will receive the same set of weightings, within its respective Peak Load Window hours

Our mission, in collaboration with our stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policymakers, stakeholders and investors in the power system

